Harvesting question-answer (QA) pairs from customer service chatlog in the wild is an efficient way to enrich the knowledge base for customer service chatbots in the cold start or continuous integration scenarios. Prior work attempts to obtain 1-to-1 QA pairs from growing customer service chatlog, which fails to integrate the incomplete utterances from the dialog context for composite QA retrieval. In this paper, we propose N-to-N QA extraction task in which the derived questions and corresponding answers might be separated across different utterances. We introduce a suite of generative/discriminative tagging based methods with end-to-end and two-stage variants that perform well on 5 customer service datasets and for the first time setup a benchmark for N-to-N DialogQAE with utterance and session level evaluation metrics. With a deep dive into extracted QA pairs, we find that the relations between and inside the QA pairs can be indicators to analyze the dialogue structure, e.g. information seeking, clarification, barge-in and elaboration. We also show that the proposed models can adapt to different domains and languages, and reduce the labor cost of knowledge accumulation in the real-world product dialogue platform.
translated by 谷歌翻译
Talking face generation aims at generating photo-realistic video portraits of a target person driven by input audio. Due to its nature of one-to-many mapping from the input audio to the output video (e.g., one speech content may have multiple feasible visual appearances), learning a deterministic mapping like previous works brings ambiguity during training, and thus causes inferior visual results. Although this one-to-many mapping could be alleviated in part by a two-stage framework (i.e., an audio-to-expression model followed by a neural-rendering model), it is still insufficient since the prediction is produced without enough information (e.g., emotions, wrinkles, etc.). In this paper, we propose MemFace to complement the missing information with an implicit memory and an explicit memory that follow the sense of the two stages respectively. More specifically, the implicit memory is employed in the audio-to-expression model to capture high-level semantics in the audio-expression shared space, while the explicit memory is employed in the neural-rendering model to help synthesize pixel-level details. Our experimental results show that our proposed MemFace surpasses all the state-of-the-art results across multiple scenarios consistently and significantly.
translated by 谷歌翻译
Privacy in AI remains a topic that draws attention from researchers and the general public in recent years. As one way to implement privacy-preserving AI, differentially private learning is a framework that enables AI models to use differential privacy (DP). To achieve DP in the learning process, existing algorithms typically limit the magnitude of gradients with a constant clipping, which requires carefully tuned due to its significant impact on model performance. As a solution to this issue, latest works NSGD and Auto-S innovatively propose to use normalization instead of clipping to avoid hyperparameter tuning. However, normalization-based approaches like NSGD and Auto-S rely on a monotonic weight function, which imposes excessive weight on small gradient samples and introduces extra deviation to the update. In this paper, we propose a Differentially Private Per-Sample Adaptive Clipping (DP-PSAC) algorithm based on a non-monotonic adaptive weight function, which guarantees privacy without the typical hyperparameter tuning process of using a constant clipping while significantly reducing the deviation between the update and true batch-averaged gradient. We provide a rigorous theoretical convergence analysis and show that with convergence rate at the same order, the proposed algorithm achieves a lower non-vanishing bound, which is maintained over training iterations, compared with NSGD/Auto-S. In addition, through extensive experimental evaluation, we show that DP-PSAC outperforms or matches the state-of-the-art methods on multiple main-stream vision and language tasks.
translated by 谷歌翻译
As an important data selection schema, active learning emerges as the essential component when iterating an Artificial Intelligence (AI) model. It becomes even more critical given the dominance of deep neural network based models, which are composed of a large number of parameters and data hungry, in application. Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions. In this paper, we present a review of active learning through deep active learning approaches from the following perspectives: 1) technical advancements in active learning, 2) applications of active learning in computer vision, 3) industrial systems leveraging or with potential to leverage active learning for data iteration, 4) current limitations and future research directions. We expect this paper to clarify the significance of active learning in a modern AI model manufacturing process and to bring additional research attention to active learning. By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies by boosting model production at scale.
translated by 谷歌翻译
Standard language model training employs gold human documents or human-human interaction data, and treats all training data as positive examples. Growing evidence shows that even with very large amounts of positive training data, issues remain that can be alleviated with relatively small amounts of negative data -- examples of what the model should not do. In this work, we propose a novel procedure to train with such data called the CRINGE loss (ContRastive Iterative Negative GEneration). We show the effectiveness of this approach across three different experiments on the tasks of safe generation, contradiction avoidance, and open-domain dialogue. Our models outperform multiple strong baselines and are conceptually simple, easy to train and implement.
translated by 谷歌翻译
Video super-resolution is one of the most popular tasks on mobile devices, being widely used for an automatic improvement of low-bitrate and low-resolution video streams. While numerous solutions have been proposed for this problem, they are usually quite computationally demanding, demonstrating low FPS rates and power efficiency on mobile devices. In this Mobile AI challenge, we address this problem and propose the participants to design an end-to-end real-time video super-resolution solution for mobile NPUs optimized for low energy consumption. The participants were provided with the REDS training dataset containing video sequences for a 4X video upscaling task. The runtime and power efficiency of all models was evaluated on the powerful MediaTek Dimensity 9000 platform with a dedicated AI processing unit capable of accelerating floating-point and quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 500 FPS rate and 0.2 [Watt / 30 FPS] power consumption. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
随着移动设备的普及,例如智能手机和可穿戴设备,更轻,更快的型号对于应用视频超级分辨率至关重要。但是,大多数以前的轻型模型倾向于集中于减少台式GPU模型推断的范围,这在当前的移动设备中可能不会节能。在本文中,我们提出了极端低功率超级分辨率(ELSR)网络,该网络仅在移动设备中消耗少量的能量。采用预训练和填充方法来提高极小模型的性能。广泛的实验表明,我们的方法在恢复质量和功耗之间取得了良好的平衡。最后,我们在目标总经理Dimenty 9000 PlantForm上,PSNR 27.34 dB和功率为0.09 w/30fps的竞争分数为90.9,在移动AI&AIM 2022实时视频超级分辨率挑战中排名第一。
translated by 谷歌翻译
本文回顾了AIM 2022上压缩图像和视频超级分辨率的挑战。这项挑战包括两条曲目。轨道1的目标是压缩图像的超分辨率,轨迹〜2靶向压缩视频的超分辨率。在轨道1中,我们使用流行的数据集DIV2K作为培训,验证和测试集。在轨道2中,我们提出了LDV 3.0数据集,其中包含365个视频,包括LDV 2.0数据集(335个视频)和30个其他视频。在这一挑战中,有12支球队和2支球队分别提交了赛道1和赛道2的最终结果。所提出的方法和解决方案衡量了压缩图像和视频上超分辨率的最先进。提出的LDV 3.0数据集可在https://github.com/renyang-home/ldv_dataset上找到。此挑战的首页是在https://github.com/renyang-home/aim22_compresssr。
translated by 谷歌翻译
文本情绪分析(也称为意见挖掘)是对实体表达的人们观点,评估,态度和情感的计算的研究。文本情绪分析可以分为文本级别的情感分析,森林级别的情感分析和方面级别的情感分析。基于方面的情感分析(ABSA)是情感分析领域中的精细任务,该任务旨在预测各个方面的极性。训练前神经模型的研究显着改善了许多自然语言处理任务的性能。近年来,培训模型(PTM)已在ABSA中应用。因此,有一个问题,即PTM是否包含ABSA的足够的句法信息。在本文中,我们探讨了最近的Deberta模型(解码增强的BERT,并引起注意),以解决基于方面的情感分析问题。 Deberta是一种基于Transformer的神经语言模型,它使用自我监督的学习来预先培训大量原始文本语料库。基于局部环境重点(LCF)机制,通过整合Deberta模型,我们为基于方面的情感分析的多任务学习模型。该实验导致了Semeval-2014最常用的笔记本电脑和餐厅数据集,而ACL Twitter数据集则表明,具有Deberta的LCF机制具有显着改善。
translated by 谷歌翻译
与基于现代聚类算法的完全监督的REID方法相比,未经监督的人重新识别(U-Reid)最近达到了竞争性能。然而,这种基于聚类的方案对大规模数据集来说变得对计算方式。如何探讨如何有效利用具有有限计算资源的无限未标记的数据,以便更好地进行更好的U-Reid。在本文中,我们首次尝试大规模U-Reid并提出一个“大型任务的小数据”范式被称为Meta聚类学习(MCL)。 MCL仅通过群集伪标记整个未标记数据的子集,以节省第一期训练的计算。之后,被学习的集群中心称为我们的MCL中的元原型,被视为代理注释器,以便轻松注释其它未标记数据以进一步抛光模型。为了缓解抛光阶段的潜在嘈杂的标签问题,我们强制执行两个精心设计的损失限制,以保证境内统一的一致性和相互识别的强烈相关性。对于多个广泛使用的U-REID基准测试,我们的方法显着节省了计算成本,同时与先前作品相比,实现了可比或更好的性能。
translated by 谷歌翻译